textabstractWe study critical percolation on a regular planar lattice. Let EG(n) be the expected number of open clusters intersecting or hitting the line segment [0, n]. (For the subscript G we either take ℍ(when we restrict to the upper halfplane, or ℂ, when we consider the full lattice). Cardy [2] (see also Yu, Saleur and Haas [11]) derived heuristically that Eℍ((n) =An +√3/4π log(n) + o(log(n)), where A is some constant. Recently Kovács, Iglói and Cardy derived in [5] heuristically (as a special case of a more general formula) that a similar result holds for Eℂ(n) with the constant √3/4π replaced by 5√3/32π. In this paper we give, for site percolation on the triangular lattice, a rigorous proof for the formula of Eℍ(n) above, and a rigorous upper bound for the prefactor of the logarithm in the formula of Eℂ(n).
展开▼
机译:我们研究了规则平面晶格上的临界渗滤。令EG(n)是相交或到达线段[0,n]的开放簇的预期数目。 (对于下标G,我们要么取ℍ(当我们限制为上半平面时,要么取ℂ,当我们考虑全晶格时。)Cardy [2](另请参见Yu,Saleur和Haas [11])启发式地得出Eℍ( (n)= An +√3/4πlog(n)+ o(log(n)),其中A是一个常数。最近Kovács,Iglói和Cardy启发式地从[5]中推导(作为更一般情况的特例)公式),对于Eℂ(n)具有类似的结果,常数√3/4π被5√3/32π取代。对于三角形格上的位置渗漏,本文给出了Eℍ(n)公式的严格证明n),以及Eℂ(n)公式中对数的因式的严格上限。
展开▼